Exemplos de determinação da carga instalada e cálculo de demanda:

Ligação de edifício residencial:

Pedido de ligação de um edifício de apartamentos residencial de 19 (dezenove) andares com 4 (quatro) apartamentos por andar. O edifício possui 2 (dois) elevadores de 15 (quinze) cv e 2 (duas) bombas d'água de 3 (três) cv.

Área total por apartamento: 128 m²
 Área total da administração: 1750 m²

Carga declarada:

- 1) Apartamento tipo
 - i) Iluminação e tomadas: 2 220 W = 2,22 kW;
 - ii) Aparelhos: 1 torneira: 3 000 W = 3,0 kW;
 - iii) 2 chuveiros: 2 x 4 000 W = 8,0 kW;
- 2) Administração e Área comum
 - i) Iluminação: 5 800 W;
 - ii) Tomadas: 3 800 W;
 - iii) Força: 2 motores de 15 cv;
 - iv) 2 bombas de 3 cv;
- 3) A tensão secundária da rede é 380/220 V

Cálculo da demanda para a área residencial:

• Método da área útil:

Demanda do apartamento em função da área útil: 121 - 130 = 2,73 kVA;

19 andares com 4 apartamentos por andar = 76 apartamentos;

Fator de coincidência em função do número de apartamentos: 60 ou + = 68,23%;

$$D_r = D_{apto} * f_{coinc} * N^{\circ}_{apto} * N^{\circ}_{pav} = 2,73 * 0,6823 * 4 * 19 = 141,56 \, kVA$$

Fator de segurança em função da demanda residencial calculada: $D_r > 100$, $F_r = 1$

Cálculo da demanda da área de serviço:

Método da carga instalada:

$$D_e = a + d + g$$

Iluminação + Tomadas de Uso Geral (TUG) - parcela "a":

Fator de potência = 0,92

Carga instalada de iluminação e tomadas 5.800 + 3.800 = 9,60 kW;

Fator de demanda para Auditório, salões e semelhantes = 1

$$a = \frac{P_{ilum} + P_{TUG}}{Fp} * F_d = \frac{9,60}{0,92} * 1 = 10,44 \text{ kVA}$$

Motores - parcela "d":

Grandes motores (M>10 cv)

Demanda individual de motores trifásicos = Eixo 15 cv e número de motores 2 = 16,78 kVA

Para grandes motores, calcula-se a demanda de modo semelhante às máquinas de solda.

100% da potência do maior aparelho;

70% da potência do segundo maior aparelho;

$$d = D_{15cv} * 100\% + D_{15cv} * 70\% = 16,78 * 1 + 0,7 * 16,78 = 28,53 \text{ kVA}$$

Bombas - parcela "g":

Como não conhecemos o fator de potência (cos α) e o rendimento (η) foi utilizado os valores correspondentes à coluna "M1" do quadro 9, para 3 cv = 4,70 kVA.

Aplicar o fator de demanda conforme Quadro 10.

$$g = D_{bombas} * N^{\circ}_{bombas} = 4,70 * 2 * 0,56 = 5,26 \, kVA$$

$$D_{s} = a + d + g = 10,44 + 28,53 + 5,26 = 44,23 \, kVA$$

Cálculo da demanda total:

$$D_t = (D_r * F_r) + D_s = (141, 56 * 1) + 44, 23 = 185,79 \, kVA$$

Entrada de serviço (Tensão 380/220 V):

Seguindo padrão COSERN e partindo da Tabela 2 do anexo II da NOR.DISTRIBU-ENGE-0022, temos que: será utilizado um transformador de 225 kVA para atender este edifício. Ramal de entrada subterrâneo ou embutido (condutores de cobre) seção 240 mm² XLPE ou 300 mm² PVC, em duto de PVC ou aço de 100 mm. A proteção geral se dará por disjuntor de 340 A.

Cada CD comporta 18

76 apartamento = 4 CDM de 18 e 1 CDM de 06

Deve-se apresentar os cálculos dos CD's parcias.

Ligação de edifício comercial:

Pedido de ligação de um edifício de escritórios com uma área total do andar tipo igual a 400 m², possuindo 14 andares, sendo que em cada andar foram projetadas 8 salas de 40 m² cada uma.

- Área total das salas: 40 m²
- Área total comum de administração = 2 500 m².

Carga declarada:

- 1) Carga de iluminação e tomadas
 - a) Por sala
 - i) Iluminação: 900 W.
 - ii) Tomadas: 400 W.
 - iii) Total: 1 300 W.
 - b) Administração e áreas comuns
 - i) Iluminação: 7 500 W.
 - ii) Tomadas: 6 000 W.
- 2) Carga de aparelhos por sala
 - i) 2 aparelhos de ar condicionado tipo janela de 14 000 BTU.
- 3) Carga de força Administração:
 - i) 4 motores de 15 cv.
 - ii) 2 motores de 3 cv.

Cálculo da demanda comercial:

• Método da carga instalada:

$$D_c = a + c$$

Iluminação + Tomadas de Uso Geral (TUG) - parcela "a":

Fator de potência = 0,92

14 andares com 8 salas por andar = 112 salas.

Carga instalada de iluminação e tomadas por sala: 900 + 400 = 1,3 kW;

Fator de demanda para escritórios = 100% para os primeiros 20 kVA e

70% para o que exceder de 20 kVA

$$P_{kVA} = N^{\circ}_{salas} * \frac{P_{ilum} + P_{TUG}}{Fp} = 112 * \frac{1,3}{0,92} = 158,26 \ kVA$$

$$a = 20 * 1 + 138,26 * 0,7 = 116,79 \ kVA$$

Aparelhos de ar condicionado - parcela "c":

Potência dos Ares Condicionados: 2 x 1,6 kW = 3,2 kW;

Fator de demanda para aparelhos de ar condicionado em função do número de aparelhos: Acima de 100 = 0,6

$$c = N^{\circ}_{AC} * N^{\circ}_{salas} * \frac{P_{AC}}{fp} * F_d = 2 * 112 * \frac{1,6}{0,92} * 0,6 = 233,74 \text{ kVA}$$

$$D_C = a + c = 116,79 + 233,74 = 350,53 \text{ kVA}$$

Cálculo da demanda da área de serviço:

• Método da carga instalada:

$$D_s = a + c + g$$

Iluminação + Tomadas de Uso Geral (TUG) - parcela "a":

Carga instalada de iluminação e tomadas da administração e áreas comuns 6 000 + 7 500 = 13,5 kW;

Fator de demanda para Auditórios, salões e semelhantes = 1;

$$a = \frac{P_{ilum} + P_{TUG}}{Fp} * F_d = \frac{13.5}{0.92} * 1 = 14.68 \text{ kVA}$$

Motores - parcela "d":

Grandes motores (M>10 cv):

Demanda individual de motores trifásicos: Eixo 15 cv e número de motores 4 = 14,88 kVA

Para grandes motores, calcula-se a demanda de modo semelhante às máquinas de solda.

100% da potência do maior aparelho;

70% da potência do segundo maior aparelho;

40% da potência do terceiro maior aparelho;

30% da potência dos demais aparelhos;

$$d = D_{15cv} * 100\% + D_{15cv} * 70\% + D_{15cv} * 40\% + D_{15cv} * 30\%$$

$$d = 14,88 * 1 + 14,88 * 0,7 + 14,88 * 0,4 + 14,88 * 0,3 = 35,72 \text{ kVA}$$

Pequenos motores (M≤5 cv;):

Demanda individual de motores trifásicos: Eixo 3 cv e número de motores 2 = 3,44 kVA

$$d = D_{motores} * N_{motores} = 3,44 * 2 = 6,88 \text{ kVA}$$

$$D_s = a + d + g = 14,68 + 35,72 + 6,88 = 57,28 \text{ kVA}$$

Cálculo da demanda total:

$$D_t = D_c + D_s = 350,53 + 57,28 = 407,81 \, kVA$$

Entrada de serviço (Tensão 380/220 V):

A edificação de múltiplas unidades consumidoras deve ser atendida em tensão primária de distribuição se a demanda total da edificação for maior que 150 kVA no sistema de 220/127 V, ou maior que 225 kVA no sistema 380/220 V ou possuir unidades consumidoras do grupo A.

Projeto de condomínio vertical com cinco blocos de apartamentos (5 QMMs – Quadro de Múltiplas Medições) e dois QGPS (Quadro Geral de Proteção e Seccionamento):

Pedido de ligação de um edifício de apartamentos residencial, que possui 5 blocos no qual cada um deles possuem 4 (quatro) apartamentos por pavimento e 4 (quatro) pavimentos.

Área total por apartamento: 48,5 m²

Carga declarada:

- 1) Apartamento tipo
 - i) Iluminação e tomadas: 1 911 W = 1,911 kW;
 - ii) Ar condicionado 10 000 BTU: 2 x 1 100 = 2,2 kW;
 - iii) Chuveiro: 2 500 W = 2,5 kW;
 - iv) Geladeira Triplex 430 l: 380 W = 0,38 kW;
 - v) Freezer Vertical: 200 W = 0,2 kW;
 - vi) Ferro Elétrico: 1 000W = 1,0 kW;
- 2) Administração e Área comum
 - i) Iluminação e tomadas: 1 910 W = 1,91 kW;
 - ii) Chuveiro: 2 500 W = 2,5 kW;
 - iii) Fornos Elétricos: 1 000W = 1,0 kW;
 - iv) Geladeira e Freezer: 580 W = 0,58 kW;
 - v) Ar Condicionado: 2 520 W = 2,52 kW;
 - vi) Bomba Hidrante de 5 cv;
 - vii) Bomba de Incêndio de 5 cv;
- 3) A tensão secundária da rede é 380/220 V

BLOCO A:

QMM04:

Cálculo da demanda para a área residencial:

Método da área útil:

Demanda do apartamento em função da área útil: 46 – 50 = 1,16 kVA;

4 pavimentos com 4 apartamentos por pavimento = 16 apartamentos;

Fator de coincidência em função do número de apartamentos: 16 = 89,5%;

$$D_r = D_{apto} * f_{coinc} * N^{\circ}_{aptos} * N^{\circ}_{pav} = 1,16 * 0,895 * 4 * 4 = 16,61 \, kVA$$

• Método da carga instalada:

$$D_r = a + b + c$$

Iluminação + Tomadas de Uso Geral (TUG) - parcela "a":

Fator de potência = 0,92

Nº total de apartamentos = 16;

Carga instalada de iluminação e tomadas 1 911 = 1,911 kW =16*2,077 = 33,24 kVA;

Fator de demanda para Residências Isoladas para Carga Instalada > 10 kVA = 0,45;

$$a = N_{aptos}^{\circ} * \frac{P_{ilum} + P_{TUG}}{Fp} * F_d = 16 * \frac{1,911}{0,92} * 0,45 = 14,96 \text{ kVA}$$

Aparelhos eletrodomésticos e de aquecimento – parcela "b":

Chuveiros:

Potência do chuveiro = 2,5 kW;

Fator de demanda para chuveiros elétricos com potência até 3,5 kVA em função do número de aparelhos: 16 = 0,39;

$$b_1 = N_{chuv}^0 * \frac{P_{chuv}}{fp} * F_d = 16 * \frac{2,5}{1} * 0,39 = 15,6 \text{ kVA}$$

Aparelhos com potência até 1 kVA:

Fator de demanda para eletrodomésticos em geral com potência até 1 kVA em função do número de aparelhos: 41 a 50 = 0,38;

$$b_6 = N_{equip}^{\circ} * \left(\frac{P_{freez} + P_{gela}}{fp} + \frac{P_{ferro}}{fp} \right) * F_d = 16 * \left(\frac{0.58}{0.92} + \frac{1}{1} \right) * 0.38 = 9.92 \ kVA$$

Aparelhos de ar condicionado - parcela "c":

Potência dos Ares Condicionados: 2 x 1,2 kW = 2,4 kW;

Fator de demanda para aparelhos de ar condicionado em função do número de aparelhos: 31 a 40 = 0,78

$$c = N^{\circ}_{AC} * N^{\circ}_{aptos} * \frac{P_{AC}}{fp} * F_d = 2 * 16 * \frac{1,2}{0,92} * 0,78 = 32,56 \text{ kVA}$$

$$D_r = a + b + c = 14,96 + 15,6 + 9,92 + 32,56 = 73,04 \text{ kVA}$$

$$16,61 \text{ kVA} < 73,04 \text{ kVA}, \qquad D_r = 26 \text{ kVA}$$

Fator de segurança em função da demanda residencial calculada: $25 < D_r \le 50$, $F_r = 1.3$

Cálculo da demanda da área de serviço:

• Método da carga instalada:

$$D_s = a + b + c + g$$

Iluminação + Tomadas de Uso Geral (TUG) - parcela "a":

Carga instalada de iluminação e tomadas 1 910 = 1,91 kW.

Fator de demanda para Auditórios, salões e semelhantes = 1;

$$a = \frac{P_{ilum} + P_{TUG}}{Fp} * F_d = \frac{1,91}{0.92} * 1 = 2,08 \text{ kVA}$$

Aparelhos eletrodomésticos e de aquecimento - parcela "b":

Chuveiros:

Potência do chuveiro = 2,5 kW;

Fator de demanda para um chuveiro elétrico com potência até 3,5 kVA = 1;

$$b_1 = \frac{P_{chuv}}{fp} * F_d = \frac{2,5}{1} * 1 = 2,50 \text{ kVA}$$

Aparelhos com potência até 1 kVA:

$$b_6 = \left(\frac{P_{freez} + P_{gela}}{fp} + \frac{P_{forno}}{fp}\right) * F_d = \left(\frac{0.58}{0.92} + \frac{1}{1}\right) * 0.96 = 1.57 \text{ kVA}$$

Aparelhos de ar condicionado – parcela "c":

Potência dos Ares Condicionados: 2,52 kW;

Fator de demanda para aparelhos de ar condicionado em função do número de aparelhos: 1 a 10 = 1;

$$c = \frac{P_{AC}}{fp} * F_d = \frac{2,52}{0.92} * 1 = 2,74 \text{ kVA}$$

Bombas:

Como não conhecemos o fator de potência ($\cos \alpha$) e o rendimento (η) foi utilizado os valores correspondentes à coluna "M1" do quadro 9, para 5 cv = 6,76 kVA.

Aplicar o fator de demanda conforme Quadro 10.

$$g = D_{bombas} * N_{bombas}^{\circ} = 6,76 * 2 * 0,56 = 7,57 \text{ kVA}$$

$$D_{s} = a + b + c + g = 2,08 + 2,50 + 1,57 + 2,74 + 7,57 = 16,46 \text{ kVA}$$

Cálculo da demanda total:

$$D_t = (D_r * F_r) + D_s = (26 * 1,3) + 16,46 = 50,26 \text{ kVA}$$

Entrada de serviço do bloco B (Tensão 380/220 V):

Partindo da Tabela 2 do anexo II da NOR.DISTRIBU-ENGE-0022, temos que: será utilizado ramal de ligação aéreo 3x25 + 1x25 mm². A proteção geral se dará por disjuntor de 90 A.

QMM05:

Análogo ao QMM04, porém não há cargas do condomínio conectadas a este quadro. Portanto, a demanda do QMM05 é igual à parcela residencial do QMM04:

$$D_t = (D_r * F_r) = (26 * 1,3) = 33,8 \text{ kVA}$$

Entrada de serviço dos QMM05 do bloco A (Tensão 380/220 V):

Partindo da Tabela 2 do anexo II da NOR.DISTRIBU-ENGE-0022, temos que: será utilizado ramal de ligação aéreo 3x16 + 1x16 mm². A proteção geral se dará por disjuntor de 70 A.

QGPS BLOCO A:

Cálculo da demanda para a área residencial:

Método da área útil:

Demanda do apartamento em função da área útil: 46 – 50 = 1,16 kVA;

2 blocos com 4 pavimentos cada com 4 apartamentos por pavimento = 32 apartamentos;

Fator de coincidência em função do número de apartamentos: 32 = 77,16%;

$$D_r = D_{apto} * f_{coinc} * N^{\circ}_{blocos} * N^{\circ}_{aptos} * N^{\circ}_{pav} = 1, 16 * 0, 7716 * 2 * 4 * 4$$

= 28.65 kVA

Fator de segurança em função da demanda residencial calculada: $25 < D_r \le 50$, $F_r = 1.3$

Cálculo da demanda da área de serviço:

A demanda da área de serviço do QGPS do bloco A é a mesma que a calculada para o QMM04, já que existe apenas essa carga do condomínio.

Cálculo da demanda total:

$$D_t = (D_r * F_r) + D_s = (28,65 * 1,3) + 22,41 = 59,65 \text{ kVA}$$

Entrada de serviço do bloco A (Tensão 380/220 V):

Partindo da Tabela 2 do anexo II da NOR.DISTRIBU-ENGE-0022, temos que: será utilizado ramal de ligação aéreo 3x25 + 1x25. A proteção geral se dará por disjuntor de 100 A.

BLOCO B:

QMM01=QMM02=QMM03:

Análogos ao QMM05. A demanda do QMM01, QMM02 e QMM3 é igual à parcela residencial do QMM04 e igual à demanda do QMM5:

$$D_t = (D_r * F_r) = (26 * 1,3) = 33,8 \, kVA$$

Entrada de serviço dos QMMs do bloco B (Tensão 380/220 V):

Partindo da Tabela 2 do anexo II da NOR.DISTRIBU-ENGE-0022, temos que: será utilizado ramal de ligação aéreo 3x16 + 1x16 mm². A proteção geral se dará por disjuntor de 70 A.

QGPS BLOCO B:

Cálculo da demanda para a área residencial:

Método da área útil:

Demanda do apartamento em função da área útil: 46 – 50 = 1,16 kVA;

3 blocos com 4 pavimentos cada com 4 apartamentos por pavimento = 48 apartamentos;

Fator de coincidência em função do número de apartamentos: 48 = 71,29%;

$$D_r = D_{apto} * f_{coinc} * N^{\circ}_{blocos} * N^{\circ}_{aptos} * N^{\circ}_{pav} = 1,16 * 0,7129 * 3 * 4 * 4$$

= 39,70 kVA

Fator de segurança em função da demanda residencial calculada: $25 < D_r \le 50, \; F_r = 1.3$

Cálculo da demanda total:

$$D_t = (D_r * F_r) = (39,70 * 1,3) = 51,60 \text{ kVA}$$

Entrada de serviço do bloco B (Tensão 380/220 V):

Partindo da Tabela 2 do anexo II da NOR.DISTRIBU-ENGE-0022, temos que: será utilizado ramal de ligação aéreo 3x25 + 1x25 mm². A proteção geral se dará por disjuntor de 90 A.

Ligação de conjunto de edifícios residenciais

Pedido de ligação de um conjunto residencial constituído de três blocos de apartamentos. Cada bloco com nove andares, possuindo do 1o ao 8o, 2 apartamentos por andar e no 9o andar um apartamento de cobertura.

- Área total do apartamento tipo: 180 m²;
- Área do apartamento de cobertura: 360 m²;
- Área comum da administração: 3000 m²;

Carga declarada:

- 1. Carga declarada do apartamento tipo:
 - i. Iluminação: 1 990 W;
 - ii. Tomadas: 3 300 W;
 - iii. Aparelhos: 1 torneira elétrica de 3 000 W;
 - iv. 1 chuveiro elétrico de 4 000 W;
 - v. 1 aparelho de aquecimento central de água de 1 500 W;
 - vi. 1 central de ar condicionado por apartamento de 8 000 W;
 - vii. 5 aparelhos distribuidores "Fan-Coil" de 250 W cada;
 - viii. 1 máquina de secar roupa de 2500 W;
- 2. Carga declarada do apartamento de cobertura:
 - i. Iluminação: 4 870 W;
 - ii. Tomadas: 4 900 W;
 - iii. Aparelhos: 1 torneira elétrica de 3 000 W;
 - iv. 1 chuveiro elétrico de 4 000 W;
 - v. 1 aparelho de aquecimento central de água de 1 500 W;
 - vi. 1 central de ar condicionado por apartamento de 14 kVA;
 - vii. 6 aparelhos distribuidores "Fan-Coil" de 300 W cada;
 - viii. 1 máquina de secar roupa de 2 500 W;
- 3. Administração e áreas comuns por bloco:
 - i. Iluminação: 10 600 W
 - ii. Tomadas: 7 200 W
- 4. Carga de força por bloco:
 - i. 2 motores trifásicos de 7 ½ cv
 - ii. 1 moto-bomba trifásica de 5 cv
- 5. A tensão secundária da rede é 380/220 V;

BLOCO 1=BLOCO 2=BLOCO 3:

Cálculo da demanda para a área residencial:

• Método da área útil:

Demanda do apartamento em função da área útil: 171 – 180 = 3,65 kVA e 351 – 400 = 7,45 kVA;

9 andares, possuindo do 1º ao 8º, 2 apartamentos por andar e no 9º andar um apartamento de cobertura. = 17 apartamentos;

Fator de coincidência em função do número de apartamentos: 17 = 88,82%;

$$D_r = D_{apto} * f_{coinc} * N_{aptos}^{\circ} = 3,65 * 0,8882 * 16 + 7,45 * 0,8882 = 58,49 \text{ kVA}$$

Fator de segurança em função da demanda residencial calculada: $50 < D_r \le 100$, $F_r = 1.2$

Cálculo da demanda da área de serviço:

• Método da carga instalada:

$$D_s = a + d + g$$

Iluminação + Tomadas de Uso Geral (TUG) - parcela "a":

Carga instalada de iluminação e tomadas 10 600 + 7 200 = 17,8 kW.

Fator de demanda para Auditórios, salões e semelhantes = 1;

$$a = \frac{P_{ilum} + P_{TUG}}{Fp} * F_d = \frac{17.8}{0.92} * 1 = 19.35 \text{ kVA}$$

Motores - parcela "d":

Médios motores (5 cv<M≤10 cv)

Demanda individual de motores trifásicos = Eixo 7,5 cv e número de motores 2 = 8,72 kVA

$$d = D_{motores} * N_{motores} = 8,72 * 2 = 17,44 \text{ kVA}$$

Bombas - parcela "g":

Como não conhecemos o fator de potência (cos α) e o rendimento (η) foi utilizado os valores correspondentes à coluna "M1" do quadro 9, para 5 cv = 6,76 kVA.

Aplicar o fator de demanda conforme Quadro 10.

$$g = D_{bombas} * N_{bombas}^{\circ} = 6,76 * 1 = 6,76 \text{ kVA}$$

 $D_s = a + d + g = 19,35 + 17,44 + 6,76 = 43,55 \text{ kVA}$

Cálculo da demanda total:

$$D_t = (D_r * F_r) + D_s = (58,49 * 1,2) + 43,55 = 113,74 \text{ kVA}$$

Entrada de serviço dos blocos 1, 2 e 3 (Tensão 380/220 V):

Partindo da Tabela 2 do anexo II da NOR.DISTRIBU-ENGE-0022, temos que: será utilizado ramal de ligação aéreo 3x70 + 1x70 mm². A proteção geral se dará por disjuntor de 200 A.

Quadro Geral (3 Blocos):

Cálculo da demanda para a área residencial:

• Método da área útil:

Demanda do apartamento em função da área útil: 171 – 180 = 3,65 kVA e 351 – 400 = 7,45 kVA;

3 blocos com 9 andares cada, possuindo do 1º ao 8º, 2 apartamentos por andar e no 9º andar um apartamento de cobertura. = 51 apartamentos;

Fator de coincidência em função do número de apartamentos: 51 = 70,39%;

$$D_r = D_{apto} * f_{coinc} * N_{aptos}^0 = 3,65 * 0,7039 * 48 + 7,45 * 0,7039 * 3 = 139,06 kVA$$

Fator de segurança em função da demanda residencial calculada: $D_r>100$, $F_r=1$

Cálculo da demanda da área de serviço:

• Método da carga instalada:

$$D_s = a + d + g$$

Iluminação + Tomadas de Uso Geral (TUG) - parcela "a":

Carga instalada de iluminação e tomadas 31 800 + 21 600 = 53,4 kW.

Fator de demanda para Auditórios, salões e semelhantes = 1;

$$a = \frac{P_{ilum} + P_{TUG}}{Fp} * F_d = \frac{53.4}{0.92} * 1 = 58.05 \text{ kVA}$$

Motores - parcela "d":

Médios motores (5 cv<M≤10 cv)

Demanda individual de motores trifásicos = Eixo 7,5 cv e número de motores 6 = 6,87 kVA

$$d = D_{motores} * N_{motores} = 6,87 * 6 = 41,22 \text{ kVA}$$

Bombas - parcela "g":

Como não conhecemos o fator de potência ($\cos \alpha$) e o rendimento (η) foi utilizado os valores correspondentes à coluna "M1" do quadro 9, para 5 cv = 6,76 kVA.

Aplicar o fator de demanda conforme Quadro 10.

$$g = D_{bombas} * N^{\circ}_{bombas} = 6,76 * 3 * 0,47 = 9,53 \text{ kVA}$$

$$D_{s} = a + d + g = 58,05 + 41,22 + 9,53 = 108,8 \text{ kVA}$$

Cálculo da demanda total:

$$D_t = (D_r * F_r) + D_s = (139,06 * 1) + 108,8 = 247,86 \text{ kVA}$$

Entrada de serviço (Tensão 380/220 V):

A edificação de múltiplas unidades consumidoras deve ser atendida em tensão primária de distribuição se a demanda total da edificação for maior que 150 kVA no sistema de 220/127 V, ou maior que 225 kVA no sistema 380/220 V ou possuir unidades consumidoras do grupo A.